Subscribe

RSS Feed (xml)

Powered By

Skin Design:
Free Blogger Skins

Powered by Blogger

Other Article About This Blog

Tampilkan postingan dengan label astrometry. Tampilkan semua postingan
Tampilkan postingan dengan label astrometry. Tampilkan semua postingan

Sabtu, 24 November 2007

Astrometry and celestial mechanics

Main articles: Astrometry and Celestial mechanics

One of the oldest fields in astronomy, and in all of science, is the measurement of the positions of celestial objects. Historically, accurate knowledge of the positions of the Sun, Moon, planets and stars has been essential in celestial navigation.

Careful measurement of the positions of the planets has led to a solid understanding of gravitational perturbations, and an ability to determine past and future positions of the planets with great accuracy, a field known as celestial mechanics. More recently the tracking of near-Earth objects will allow for predictions of close encounters, and potential collisions, with the Earth.[18]

The measurement of stellar parallax of nearby stars provides a fundamental baseline in the cosmic distance ladder that is used to measure the scale of the universe. Parallax measurements of nearby stars provide an absolute baseline for the properties of more distant stars, because their properties can be compared. Measurements of radial velocity and proper motion show the kinematics of these systems through the Milky Way galaxy. Astrometric results are also used to measure the distribution of dark matter in the galaxy.[19]

During the 1990s, the astrometric technique of measuring the stellar wobble was used to detect large extrasolar planets orbiting nearby stars.

History

Main article: History of astronomy
Further information: Archaeoastronomy
A celestial map from the 17th century, by the Dutch cartographer Frederik de Wit.
A celestial map from the 17th century, by the Dutch cartographer Frederik de Wit.

In early times, astronomy only comprised the observation and predictions of the motions of objects visible to the naked eye. In some locations, such as Stonehenge, early cultures assembled massive artifacts that likely had some astronomical purpose. In addition to their ceremonial uses, these observatories could be employed to determine the seasons, an important factor in knowing when to plant crops, as well as in understanding the length of the year.[8]

Before tools such as the telescope were invented early study of the stars had to be conducted from the only vantage points available, namely tall buildings, trees and high ground using the bare eye.

As civilizations developed, most notably Mesopotamia, Egypt, Persia, Maya, Greece, India, China, and the Islamic world, astronomical observatories were assembled, and ideas on the nature of the universe began to be explored. Most of early astronomy actually consisted of mapping the positions of the stars and planets, a science now referred to as astrometry. From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon and the Earth in the universe were explored philosophically. The Earth was believed to be the center of the universe with the Sun, the Moon and the stars rotating around it. This is known as the geocentric model of the universe.

A few notable astronomical discoveries were made prior to the application of the telescope. For example, the obliquity of the ecliptic was estimated as early as 1000 BC by the Chinese. The Chaldeans discovered that lunar eclipses recurred in a repeating cycle known as a saros.[9] In the 2nd century BC, the size and distance of the Moon were estimated by Hipparchus.[10]

During the Middle Ages, observational astronomy was mostly stagnant in medieval Europe, at least until the 13th century. However, observational astronomy flourished in the Islamic world and other parts of the world. Astronomers during that time introduced many Arabic names that are now used for individual stars.

Astronomy

From Wikipedia, the free encyclopedia

Astronomy is the scientific study of celestial objects (such as stars, planets, comets, and galaxies) and phenomena that originate outside the Earth's atmosphere (such as the cosmic background radiation). It is concerned with the evolution, physics, chemistry, meteorology, and motion of celestial objects, as well as the formation and development of the universe.

Astronomy is one of the oldest sciences. Astronomers of early civilizations performed methodical observations of the night sky, and astronomical artifacts have been found from much earlier periods. However, the invention of the telescope was required before astronomy was able to develop into a modern science. Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy, the making of calendars, and even astrology, but professional astronomy is nowadays often considered to be synonymous with astrophysics. Since the 20th century, the field of professional astronomy split into observational and theoretical branches. Observational astronomy is focused on acquiring and analyzing data, mainly using basic principles of physics. Theoretical astronomy is oriented towards the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain the observational results, and observations being used to confirm theoretical results.

Amateur astronomers have contributed to many important astronomical discoveries, and astronomy is one of the few sciences where amateurs can still play an active role, especially in the discovery and observation of transient phenomena.

Old or even ancient astronomy is not to be confused with astrology, the belief system that claims that human affairs are correlated with the positions of celestial objects. Although the two fields share a common origin and a part of their methods (namely, the use of ephemerides), they are distinct.[1]

Article

Feeds Article